|

楼主 |
发表于 2023-6-24 00:02:59
|
显示全部楼层
薛定谔方程变形,虚部实部分开
$$\frac{\partial\psi_{I}(x,t)}{\partial t}=\frac{\hbar}{2m}\frac{\partial^{2}\psi_{R}(x,t)}{\partial x^{2}}-\frac{1}{\hbar}V(x)\psi_{R}(x,t) $$
$$\frac{\partial\psi_{R}(x,t)}{\partial t}=\frac{\hbar}{2m}\frac{\partial^{2}\psi_{I}(x,t)}{\partial x^{2}}+\frac{1}{\hbar}V(x)\psi_{I}(x,t)$$
可以得到如下关系
$$\frac{\partial\psi_\varepsilon(x,t)}{\partial t}\bigg|_{t=(n+1/2)\Delta t}=\frac{\psi_\varepsilon(x,(n+1)\cdot\Delta t)-\psi_\varepsilon(x,n\Delta t)}{\Delta t} ,\xi=R\textit{ or }I$$
和
$$\frac{\partial^2\psi_\xi(x,t)}{\partial x^2}\Bigg|_{\begin{aligned}x\to k\Delta x\\ t=n\Delta x\end{aligned}}=\frac{1}{\left(\Delta x\right)^2}\left[\psi_\xi\left(\Delta x\cdot(k+1\right),n\Delta t\right) -2\psi_\xi\left(\Delta x\cdot k,n\Delta t\right) +\psi_\xi\left(\Delta x\cdot(k-1),n\Delta t \right) ]$$
引入如下表示符号$\psi(k\Delta x,n\Delta t)\Leftrightarrow\psi^n(k)$,则
$$\psi_R^{n+1}(k) =\psi_{R}^{n}(k)-\frac{\hbar}{2m}\frac{\Delta t}{(\Delta x)^{2}} [\psi_i^{n+1/2}(k+1)-2\psi_j^{n+1/2}(k) +\psi_I^{n+1/2}(k-1)] +\frac{\Delta t}{\hbar}V(k)\psi_{I}^{n+1/2}(k)$$
$$\psi_I^{n+1}(k) =\psi_{I}^{n}(k)+\frac{\hbar}{2m}\frac{\Delta t}{\left(\Delta x\right)^{2}} [\psi_R^{n+1/2}(k+1)-2\psi_R^{n+1/2}(k) +\psi_R^{n+1/2}(k-1)] -\frac{\Delta t}{\hbar}V(k)\psi_R^{n+1/2}(k)$$
可以看出,由n和n+1/2时刻的周围点,就可以推出当前点的值
|
|